六氮杂异伍兹烷高能衍生物的合成与表征

2019-02-24 21:19:19

乙酰基 杂异 伍兹烷 六氮 TADEIW









中文题名六氮杂异伍兹烷高能衍生物的合成与表征

 





副题名 





外文题名 Synthesis and identification of hexaazaisowurtzitane energetic derivatives 





论文作者刘利华   





导师欧育湘  陈博仁教授   





学科专业材料学  含能材料   





研究领域\研究方向 





学位级别博士 





学位授予单位北京理工大学   





学位授予日期2001   





论文页码总数10,180页   





关键词高能量密度材料  含能材料  氧化硝解  六硝基六氮杂异伍兹烷  六苄基六氮杂异伍兹烷   





馆藏号BSLW

/2001

/O621

/47 





【中文摘要】

    摘 要
   本文主要研究了高能量密度化合物六硝基六氮杂异伍兹烷(HNIW)及其含能衍生物(笼形叠氮硝胺)的合成,完成了以下研究内容: 1.研究了反应溶剂组成、不同类型催化剂及催化剂用量对HBIW催化氢解脱苄的影响。在乙酸酐-DMF-溴苯中对HBIW进行催化氢解脱苄时,DMF与乙酸酐的体积比为1:2~1:1较为适宜;自制的〓及无载体〓的催化效果与Acros公司的Pearlman催化剂的催化效果相当,TADBIW的得率能稳定在80%以上,其它自制的催化剂或催化活性低或不起催化作用;无载体〓自制的〓及〓在催化HBIW氢解脱苄时的最低用量可达〓,而对TADBIW的得率及质量影响不大。采用控制吸氢量的方法,分离制得了HBIW催化氢解脱苄的低酰化物二丙酰基四苄基六氮杂异伍兹烷(DPTBIW)和三丙酰基三苄基六氮杂异伍兹烷(TPTBIW)。
2.以四乙酰基二乙基六氮杂异伍兹烷(TADEIW)为硝解基质,通过氧化硝解高得率(几乎定量得率)地制得了HNIW,这与A.J.Bellamy的结论(硝解TADEIW不能得到HNIW)恰恰相反。研究了乙酸/乙酸酐或水-乙酸酐的组成、催化剂类型及催化剂用量对TADBIW氢解的影响。当乙酸与乙酸酐的体积比为0.1~0.3或水与乙酸酐的体积比为0.02~0.07时,氢解TADBIW能以较高得率制得TADEIW;氢解TADBIW制备TADEIW时最为合适的催化剂是〓;当催化剂用量为25mg〓TADBIW时,氢解得到的是五乙酰基〓乙基六氮杂异伍兹烷(PAMEIW)。TADEIW的氧化时间对HNIW的得率及质量的影响很大,当用复合氧化剂NPO氧化TADEIW的时间大于2.5h后,以95%〓发烟〓为硝解剂硝解TADEIW,就能高得率高纯度地制得HNIW。
3.以HBIW为原料,通过二次氢解脱苄、N-酰化、硝解、叠氮化等反应制得了四硝基二(叠氮乙酰基)六氮杂异伍兹烷(4-7A)、五硝基〓(叠氮乙酰基)六氮杂异伍兹烷(4-8)、四硝基二(α-叠氮丙酰基)六氮杂异伍兹烷(4-7B)三个新型的笼形叠氮硝胺。同时还制得了9个未见文献报道六氮杂异伍兹烷衍生物,它们是四乙酰基二(氯乙酰基)六氮杂异伍兹烷(4-4A)、四乙酰基二(α-氯丙酰基)六氮杂异伍兹烷(4-4B)、四乙酰基二(β-氯丙酰基)六氮杂异伍兹烷(4-4C)、四乙酰基二(γ-氯丁酰基)六氮杂异伍兹烷(4-4D)、四硝基二(氯乙酰基)六氮杂异伍兹烷(4-5A)、五硝基〓(氯乙酰基)六氮杂异伍兹烷(4-6)、四乙酰基二(叠氮乙酰基)六氮杂异伍兹烷(4-14)、四乙酰基二(α-叠氮丙酰基)六氮杂异伍兹烷(4-15)、四硝基二(碘乙酰基)六氮杂异伍兹烷(4-16)、2,6,8,12-四硝基-4,10-二硝基乙酰基六氮杂异伍兹烷(4-17)。通过FT-IR、〓 NMR、MS(CI)及元素分析对以上化合物的结构进行了表征。通过DSC研究了(4-7A)的热分解唯象动力学和相容性。
4.对四乙酰基二(氯乙酰基)六氮杂异伍兹烷(4-4A)、四乙酰基二(叠氮乙酰基)六氮杂异伍兹烷(4-14)、四硝基二(氯乙酰基)六氮杂异伍兹烷(4-5A)及四硝基二(叠氮乙酰基)六氮杂异伍兹烷(4-7A)的单晶进行了X射线衍射分析,得到了它们的分子立体结构图和晶胞内分子堆积图,测定了键长、键角等参数。
5.通过扫描电子显微镜(SEM)、X射线衍射(XRD)及光电子能谱(XPS)对一些典型的Pd系催化剂进行了结构表征。结果发现催化活性高的催化剂对其载体、催化活性组分的形状、相态及表面化学状态有一定的要求。











【外文摘要】

   
ABSTRACT
   This dissertation mainly deals with the synthesis of hexanitrohexaazaisowurtzitane(HNIW) and its energetic derivatives(caged azidonitramines). The following research workhas been done. 1. The influence of solvent, catalyst type and the amount of catalyst on the catalytic hydrogenolysisdebenzylation of hexabenzylhexaazaisowurtzitane(HBIW) was studied. When catalytic hydrogenolysisdebenzylation of HBIW is carried out in the mixture of acetic anhydride-DMF-bromobenzene, thepreferable volume ratio of DMF and acetic anhydride is 1:2~1:1. The catalysts of 〓.〓 and 〓 prepared at the 〓lab showed the same catalytic effect as 〓catalyst produced by Acros reagent Company, and tetraacetyldibenzylhexaazaisowurtzitane(TADBIW)can be obtained in good yield(>80%). The least amount of 〓 and 〓 in thecatalytic hydrogenolysis debenzylation of HBIW is 1.5mg〓HBIW. and this doesn't effect thequality and yield of TADBIW. Dipropionyltetrabenzylhexaazaisowurtzitane(DPTBIW) andtertpropionyltertbenzylhexaazaisowurtzitane(TPTBIW) were obtained by isolation. 2. HNIW is obtained in quantitative yield by oxidation-nitrolysis of tetraacetyl-diethylhexaazaisowurtzitane(TADEIW), this just opposites to A. J. Bellamy's conclusionthat it is unsuccessful to nitrate TADEIW to HNIW When the content of acetic acid inacetic acid-acetic anhydride is 10%~30%, or the content of water in water-acetic anhydrideis %2~7%, TADEIW can be obtained in good yield. The catalyst type and the amount ofcatalyst on the hydrogenolysis of TADBIW was studied. The proper catalyst is 〓when TADBIW is hydrogenized to TADEIW. When the amount of catalyst is 25mg〓TADBIW, pentaacetylmonoethylhexaazaisowurtzitane(PAMEIW) is obtainedin the hydrogenolysis of TADBIW. The time of TADEIW oxidation has great influence onthe yield and quality of HNIW. If the time of oxidizing TADEIW with complex oxidizerNPO exceeds 2.5 h, HNIW is obtained in high yield and high purity by nitrolysis TADEIWwith 95% nitric acid and the fuming sulfuric acid. 3. Three caged azidonitramines, including tetranitrodi(azidoacetyl)hexaaza-isowurtzitane(4-7A), pentanitromono(azidoacetyl)hexaazaisowurtzitane(4-8), andtetranitrodi(α-azidopropionyl)hexaazaisowurtztitane(4-7B) were synthesized via twicehydrogenolysis debenzylation, N-acylation, nitrolysis, and azidation, with HBIW as startingmaterial. At the same time, nine hexaazaisowurtzitane derivatives(tetraacetyldi(chloroacetyl)hexaazaisowurtzitane(4-4A), tetraacetyldi(α-chloropropionyl)-hexaazaisowurtzitane(4-4B), tetraacetyldi(β-chloropropionyl)hexaazaisowurtzitane(4-4C),tetraacetyldi(γ-chlorobutyryl)hexaazaisowurtzitane(4-4D), tetranitrodi(chloroacetyl)hexa-azaisowurtzitane(4-5A), pentanitromono(chloroacetyl)hexaazaisowurtzitane(4-6), tetra-acetyldi(azidoacetyl)hexaazaisowurtzitane(4-14), tetraacetyldi(α-azidopropionyl)hexaaza-isowurtzitane(4-15), tetranitrodi(iodacetyl)hexaazaisowurtzitane(4-16), and 2,6,8,12-tetranitro-4,10-di(nitroacetyl)hexaazaisowurtzitane(4-17)), are synthesized, and they aren'treported in the literatures. Their structures were identified by FT-IR, 〓 NMR, MS(CI) andelemental analysis. (4-7A)'s microcosmic dynamics of thermal decomposition andcompatibility were studied by DSC. 4. The single crystals of (4-4A), (4-14), (4-5A), and (4-7A) were obtained by slowlyevaporating solvents, and they were characterized by X-ray diffraction. The crystalstructure data and the crystal cell parameters were obtained. 5. The structures of a series catalyst of palladium were characterized by scanningelectronic microscope, X-ray diffraction, and X-ray photoelectron spectrum (XPS). Theresult shows that the shape, the state of phase, and the surface state of the supporter andactive component have great effect on the catalytic activity.