Activation energy of electron transport in dye-sensitized TiO2 solar cells

2019-09-25 04:33:32

model potential TiO2 transport electron

责任者: Boschloo, Gerrit;Hagfeldt, Anders 单位: Department of Physical Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden 来源出处: Journal of Physical Chemistry B,2005,109(24):12093-12098 摘要: Various characteristics of dye-sensitized nanostructured TiO2 solar cells, such as electron transport and electron lifetime, were studied in detail using monochromatic illumination conditions. The electron transport was found to be a thermally activated process with activation energies in the range of 0.10-0.15 eV for light intensities that varied 2 orders of magnitude. Electron lifetimes were determined using a new method and found to be significantly larger (>1 s) than previously determined. An average potential was determined for electrons in the nanostructured TiO2 under illumination in short-circuit conditions. This potential is about 0.2 V lower than the open-circuit potential at the same light intensity. The electron transport time varies exponentially with the internal potential at short-circuit conditions, indicating that the gradient in the electrochemical potential is the driving force for electron transport in the nanostructured TiO2 film. The applicability of the conventionally used trapping/detrapping model is critically analyzed. Although experimental results can be fitted using a trapping/detrapping model with an exponential distribution of traps, the distribution parameters differ significantly between different types of experiment. Furthermore, the experimental activation energies for electron transport are smaller than those expected in a trapping/detrapping model. © 2005 American Chemical Society. 关键词: Solar cells;Titanium oxides;Dyes;Electron transitions;Activation energy;Light amplifiers;Electrochemistry;Nanostructured materials;Temperature measurement;Electron transport;Detrapping model;Linear dependence;Potential charge