Growth of GaP nanotree structures by sequential seeding of 1D nanowires

2019-08-14 10:02:55

materials growth structures III

责任者: Dick, Kimberly A.;Deppert, Knut;Martensson, Thomas;Seifert, Werner;Samuelson, Lars 单位: Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden 来源出处: Journal of Crystal Growth,2004,272(1-4 SPEC ISS):131-137 摘要: Complex nanostructures are becoming increasingly important for the development of nanoscale devices and functional nanomaterials. Precise control of size and morphology of these structures is critical to their fabrication and exploitation. We have developed a method for stepwise growth of tree-like nanostructures via the vapour-liquid-solid (VLS) growth mode, demonstrated for III-V semiconductor materials. This method uses the initial seeding of nanowires by catalytic aerosol nanoparticles to form the trunk, followed by sequential seeding of branching structures. Here we present a detailed study of the growth of these complex structures using GaP. Diameter of each level of nanowires is directly determined by seed particle diameters, and number of branches is determined by seed particle density. Growth rate is shown to increase with temperature to a maximum corresponding to the temperature of complete decomposition of the Group-III precursor material, and subsequently decrease due to competition with bulk growth. Growth rate also depends on flow of the Group-III precursor, but not on the Group-V precursor. Finally, there is a relationship between the number of branches and their growth rate, suggesting that material diffusion plays a role in nanowire branch growth. © 2004 Elsevier B.V. All rights reserved. 关键词: Crystal growth;Nanostructured materials;Semiconducting gallium compounds;Semiconductor growth;One dimensional;Wire;Catalysts;Aerosols;Density (specific gravity);Decomposition;Metallorganic vapor phase epitaxy;Precipitation (chemical);Desorption;Nanostructure;Semiconducting III-V materials;One dimensional (1D) nanowire;Nanotree structure